If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-n=37830
We move all terms to the left:
n^2-n-(37830)=0
We add all the numbers together, and all the variables
n^2-1n-37830=0
a = 1; b = -1; c = -37830;
Δ = b2-4ac
Δ = -12-4·1·(-37830)
Δ = 151321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{151321}=389$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-389}{2*1}=\frac{-388}{2} =-194 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+389}{2*1}=\frac{390}{2} =195 $
| 10+3x=10+xx= | | Y=1/2x+280 | | -10+10v=8–8v | | 1/2y+3/4=y+5/8 | | y/10=5/11 | | 30m+92=842 | | n^2-n=37,830 | | 5x-9=7x=6-2x | | 7x+3=8=6x | | 10-4(1p+7)=2(1-1p) | | 2x+51=19x;x | | (8x)-12=(3x)+28 | | 4-7x=1-6× | | 1.4m+9=-16 | | 47=41/3n | | 3w=36-w | | 5-3=b+4-2 | | 22=2x+x+10 | | (2/3)x+1/6=-(3/4)x+1 | | 15x=9x+30;x | | -36=-6/5u | | 4n^2+16n-19=-10 | | x^2-7x-(1/7)=0 | | 11/12=x+1/4 | | 5+2x+7x=68 | | 11/4=4x | | 35+.50x=30 | | 8.2-3.2c=17.4 | | 8x-1=3-4x | | 0.3(x+10)-0.05(x-50)=8 | | 0=-4p+p | | 7/2=b+4.5/b-0.5 |